497 research outputs found

    X-ray measured metallicities of the intra-cluster medium: a good measure for the metal mass?

    Full text link
    Aims. We investigate whether X-ray observations map heavy elements in the Intra-Cluster Medium (ICM) well and whether the X-ray observations yield good estimates for the metal mass, with respect to predictions on transport mech- anisms of heavy elements from galaxies into the ICM. We further test the accuracy of simulated metallicity maps. Methods. We extract synthetic X-ray spectra from N-body/hydrodynamic simulations including metal enrichment pro- cesses, which we then analyse with the same methods as are applied to observations. By changing the metal distribution in the simulated galaxy clusters, we investigate the dependence of the overall metallicity as a function of the metal distribution. In addition we investigate the difference of X-ray weighted metal maps produced by simulations and metal maps extracted from artifcial X-ray spectra, which we calculate with SPEX2.0 and analyse with XSPEC12.0. Results. The overall metallicity depends strongly on the distribution of metals within the galaxy cluster. The more inhomogeneously the metals are distributed within the cluster, the less accurate is the metallicity as a measure for the true metal mass. The true metal mass is generally underestimated by X-ray observations. The difference between the X-ray weighted metal maps and the metal maps from synthetic X-ray spectra is on average less than 7% in the temperature regime above T > 3E7 K, i.e. X-ray weighted metal maps can be well used for comparison with observed metal maps. Extracting the metal mass in the central parts (r < 500 kpc) of galaxy clusters with X-ray observations results in metal mass underestimates up to a factor of three.Comment: 7 pages, 9 figures, accepted for publication in A&

    The effect of ram pressure on the star formation, mass distribution and morphology of galaxies

    Full text link
    We investigate the dependence of star formation and the distribution of the components of galaxies on the strength of ram pressure. Several mock observations in X-ray, Hα\alpha and HI wavelength for different ram-pressure scenarios are presented. By applying a combined N-body/hydrodynamic description (GADGET-2) with radiative cooling and a recipe for star formation and stellar feedback 12 different ram-pressure stripping scenarios for disc galaxies were calculated. Special emphasis was put on the gas within the disc and in the surroundings. All gas particles within the computational domain having the same mass resolution. The relative velocity was varied from 100 km/s to 1000 km/s in different surrounding gas densities in the range from 1×10281\times10^{-28} to 5×10275\times10^{-27} g/cm3^3. The temperature of the surrounding gas was initially 1×1071\times10^{7} K. The star formation of a galaxy is enhanced by more than a magnitude in the simulation with a high ram-pressure (5×10115\times10^{-11} dyn/cm2^2) in comparison to the same system evolving in isolation. The enhancement of the star formation depends more on the surrounding gas density than on the relative velocity. Up to 95% of all newly formed stars can be found in the wake of the galaxy out to distances of more than 350 kpc behind the stellar disc. Continuously stars fall back to the old stellar disc, building up a bulge-like structure. Young stars can be found throughout the stripped wake with surface densities locally comparable to values in the inner stellar disc. Ram-pressure stripping can shift the location of star formation from the disc into the wake on very short timescales. (Abridged)Comment: 19 pages, 25 figures, A&A accepted, high resolution version can be found at http://astro.uibk.ac.at/~wolfgang/kapferer_rps_galaxies.pd

    Inhomogeneous Metal Distribution in the Intra-Cluster Medium

    Full text link
    The hot gas that fills the space between galaxies in clusters is rich in metals. In their large potential wells, galaxy clusters accumulate metals over the whole cluster history and hence they retain important information on cluster formation and evolution. We use a sample of 5 cool core clusters to study the distribution of metals in the ICM. We investigate whether the X-ray observations yield good estimates for the metal mass and whether the heavy elements abundances are consistent with a certain relative fraction of SN Ia to SNCC. We derive detailed metallicity maps of the clusters from XMM - Newton observations and we use them as a measure for the metal mass in the ICM. We determine radial profiles for several elements and using population synthesis and chemical enrichment models, we study the agreement between the measured abundances and the theoretical yields. We show that even in relaxed clusters the distribution of metals show a lot of inhomogeneities. Using metal maps usually gives a metal mass 10-30% higher than the metal mass computed using a single extraction region, hence it is expected that most previous metal mass determination have underestimated metal mass. The abundance ratio of {\alpha}-elements to Fe, even in the central parts of clusters, are consistent with an enrichment due to the combination of SN Ia and SNCC

    Internal kinematics of isolated modelled disk galaxies

    Full text link
    We present a systematic investigation of rotation curves (RCs) of fully hydrodynamically simulated galaxies, including cooling, star formation with associated feedback and galactic winds. Applying two commonly used fitting formulae to characterize the RCs, we investigate systematic effects on the shape of RCs both by observational constraints and internal properties of the galaxies. We mainly focus on effects that occur in measurements of intermediate and high redshift galaxies. We find that RC parameters are affected by the observational setup, like slit misalignment or the spatial resolution and also depend on the evolution of a galaxy. Therefore, a direct comparison of quantities derived from measured RCs with predictions of semi-analytic models is difficult. The virial velocity V_c, which is usually calculated and used by semi-analytic models can differ significantly from fit parameters like V_max or V_opt inferred from RCs. We find that V_c is usually lower than typical characteristic velocities derived from RCs. V_max alone is in general not a robust estimator for the virial mass.Comment: 9 pages, 15 figures, accepted for publication in A&

    Metal enrichment of the intra-cluster medium by thermally and cosmic-ray driven galactic winds

    Get PDF
    We investigate the efficiency and time-dependence of thermally and cosmic ray driven galactic winds for the metal enrichment of the intra-cluster medium (ICM) using a new analytical approximation for the mass outflow. The spatial distribution of the metals are studied using radial metallicity profiles and 2D metallicity maps of the model clusters as they would be observed by X-ray telescopes like XMM-Newton. Analytical approximations for the mass loss by galactic winds driven by thermal and cosmic ray pressure are derived from the Bernoulli equation and implemented in combined N-body/hydrodynamic cosmological simulations with a semi-analytical galaxy formation model. Observable quantities like the mean metallicity, metallicity profiles, and 2D metal maps of the model clusters are derived from the simulations. We find that galactic winds alone cannot account for the observed metallicity of the ICM. At redshift z=0z=0 the model clusters have metallicities originating from galactic winds which are almost a factor of 10 lower than the observed values. For massive, relaxed clusters we find, as in previous studies, a central drop in the metallicity due to a suppression of the galactic winds by the pressure of the ambient ICM. Combining ram-pressure stripping and galactic winds we find radial metallicity profiles of the model clusters which agree qualitatively with observed profiles. Only in the inner parts of massive clusters the observed profiles are steeper than in the simulations. Also the combination of galactic winds and ram-pressure stripping yields too low values for the ICM metallicities. The slope of the redshift evolution of the mean metallicity in the simulations agrees reasonably well with recent observations.Comment: 9 pages, 6 figures, accepted by A&

    Internal kinematics of modelled interacting disc galaxies

    Full text link
    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys disturb the velocity fields significantly and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are significantly rising or falling profiles in the direction of the companion galaxy and pronounced bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. We use a quantitative measure for the asymmetry of rotation curves to show that the appearance of these distortions strongly depends on the viewing angle. We also find in this way that the velocity fields settle back into relatively undisturbed equilibrium states after unequal mass mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no severe distortions anymore. These results are consistent with previous theoretical and observational studies. As an illustration of our results, we compare our simulated velocity fields and direct images with rotation curves from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find remarkable similarities.Comment: 13 pages, 14 figures, accepted for publication in A&A, some improvements and changes, main conclusions are unaffecte

    XMM Observations of Metal Abundances in Galaxy Clusters

    Get PDF
    The hot gas that fills the space between galaxies in clusters is rich in metals. Due to their large potential well, galaxy clusters accumulate metals over the whole history of the cluster, and retain important information on cluster formation and evolution.We derive detailed metallicity maps for a sample of 5 clusters, observed with XMM-Newton, to study the distribution of metals in the Intra-Cluster Medium (ICM). We show that even in relaxed clusters the distribution of metals shows many inhomogeneities with several maxima separated by low metallicity regions. We also found a deviation from the expected temperature-metallicity relation

    2D velocity fields of simulated interacting disc galaxies

    Full text link
    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for a Tully-Fisher study. For small galaxies (disc scale length ~2 kpc) even strong distortions are not visible in the velocity field at z~0.5 with currently available angular resolution. Therefore we conclude that current distant Tully-Fisher studies cannot give reliable results for low-mass systems. Additionally to these studies we confirm the power of near-infrared integral field spectrometers in combination with adaptive optics (such as SINFONI) to study velocity fields of galaxies at high redshift (z~2).Comment: 12 pages, 18 figures, accepted for publication in A&A, high resolution version can be found at http://astro.uibk.ac.at/~thomas/kronberger.pd

    Galaxies undergoing ram-pressure stripping: the influence of the bulge on morphology and star formation rate

    Full text link
    We investigate the influence of stellar bulges on the star formation and morphology of disc galaxies that suffer from ram pressure. Several tree-SPH (smoothed particle hydrodynamics) simulations have been carried out to study the dependence of the star formation rate on the mass and size of a stellar bulge. In addition, different strengths of ram pressure and different alignments of the disc with respect to the intra-cluster medium (ICM) are applied. As claimed in previous works, when ram pressure is acting on a galaxy, the star formation rate (SFR) is enhanced and rises up to four times with increasing ICM density compared to galaxies that evolve in isolation. However, a bulge suppresses the SFR when the same ram pressure is applied. Consequently, fewer new stars are formed because the SFR can be lowered by up to 2 M_sun/yr. Furthermore, the denser the surrounding gas, the more inter-stellar medium (ISM) is stripped. While at an ICM density of 10^-28 g/cm^3 about 30% of the ISM is stripped, the galaxy is almost completely (more than 90%) stripped when an ICM density of 10^-27 g/cm^3 is applied. But again, a bulge prevents the stripping of the ISM and reduces the amount being stripped by up to 10%. Thereby, fewer stars are formed in the wake if the galaxy contains a bulge. The dependence of the SFR on the disc tilt angle is not very pronounced. Hereby a slight trend of decreasing star formation with increasing inclination angle can be determined. Furthermore, with increasing disc tilt angles, less gas is stripped and therefore fewer stars are formed in the wake. Reducing the disc gas mass fraction results in a lower SFR when the galaxies evolve in vacuum. On the other hand, the enhancement of the SFR in case of acting ram pressure is less pronounced with increasing gas mass fraction. Moreover, the fractional amount of stripped gas does not depend on the gas mass fraction.Comment: 11 pages, 18 figure
    corecore